令和2年9月18日 静岡県環境放射線監視センター 中部電力株式会社浜岡原子力発電所

Ⅲ 令和2年度第2四半期浜岡原子力発電所周辺環境放射能測定結果速報

令和2年度第2四半期中の測定において、平常の変動幅を逸脱した測定があったので下記のとおり報告する。

記

- 1 対象項目
- (1)平常の変動幅の上限逸脱
 - •空間放射線量率(草笛局)
 - ・環境試料中の放射能(原乳)
- (2) 平常の変動幅の下限逸脱
 - ・空間放射線量率(上ノ原局、佐倉三区局、白羽小学校局、地頭方小学校局、 浜岡北小学校局)
- 2 原因調査結果 別添のとおり。

Ⅲ 添付1

単位 · nGv/h

令和2年9月18日 静岡県環境放射線監視センター 中部電力株式会社浜岡原子力発電所

平常の変動幅の上限逸脱に係る原因調査報告(空間放射線量率)

1 概要

令和2年7月14日及び8月7日、草笛モニタリングステーション(以下「MS」という。) に隣接する工場においてX線を用いた「非破壊検査」が行われ、X線の照射により、空間放射線量率の値が一時的に平常の変動幅の上限を超過した。

なお、X線を用いた非破壊検査の実施にあたり、事前に当該工場から電話連絡を受けている。

当該工場の非破壊検査による草笛MSの測定値の上昇は、過去(平成15年11月19日、平成16年12月24日、平成19年3月28、29日、4月10日、平成21年12月14~16日、平成25年2月27日及び平成27年2月18日)にも発生し、環境放射能測定技術会で報告済みである。

2 測定結果

表1、2のとおり、草笛 MS で測定した空間放射線量率が、平常の変動幅の上限を 超過した。

表 1 空間放射線量率 (10 分間平均値) 単位:nGy/h

実施日時	7月14日	8月7日	平常の変動幅
	9:30~10:30	14:10~14:20	(10 分間平均値)
測定値 (最大値)	210	229	38~77

表 2 空間放射線量率 (1時間平均値)

	工的冰冰工业(工	(11日) 「**21巨/	十 <u>元</u> · 110 y / 11
実施日時	7月14日 10:00	8月7日 15:00	平常の変動幅 (1時間平均値)
測定値 (最大値)	119	84	38~73

3 原因調査

(1) 発電所の状況

当該日時において発電所内のエリアモニタリング設備等に異常は認められず、発 電所外への放出管理も適切に行われており、発電所からの影響はない。

(2) 非破壊検査の実施状況

当該工場への聞き取りから、7月14日9:30頃及び8月7日14:00頃から検査を開始し、 それぞれ約1時間及び約30分程度実施したとのことであり、図1、2の線量率の上 昇時刻と一致する。

X線の照射は、委託した検査会社により法令に定められた手順に基づき実施されたとのことであった。

(3) 人工放射線による影響

非破壊検査で用いられたX線発生装置の管電圧は最大150kVであった。 線量率上昇時のスペクトルと平常時のスペクトルの結果を図3、4に示す。 スペクトル解析の結果、150keVよりも低いエネルギーの放射線の増加が確認され、 線量率上昇の原因はX線を用いた非破壊検査のみであると考えられる。

(4) 測定器等の健全性

当該事象発生直後の現場点検等において、測定機器等に異常がないことを確認した。また、当該日時の現地の記録計の指示値とテレメータシステムで収集したデータとの間に相違がないことを確認した。

4 まとめ

調査の結果、草笛MSにおいて空間放射線量率の値が平常の変動幅の上限を超過した 原因は、浜岡原子力発電所からの影響ではなく、隣接する工場で実施されたX線の非 破壊検査によるものと考えられる。

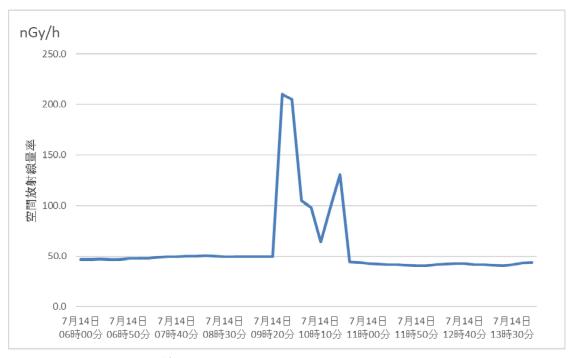


図1 7月14日線量率の時系列変化(草笛MS 10分間平均値)

図2 8月7日線量率の時系列変化(草笛MS 10分間平均値)

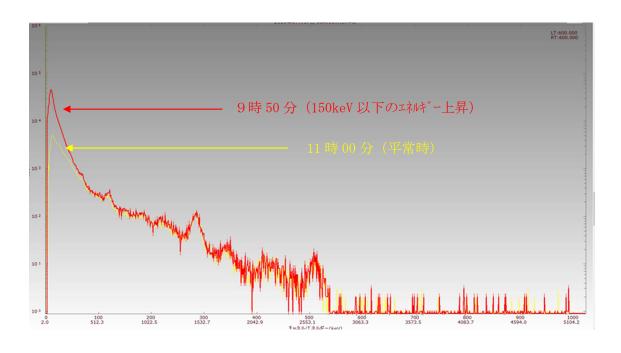


図3 7月14日スペクトル解析結果(草笛MS 10分間平均値)

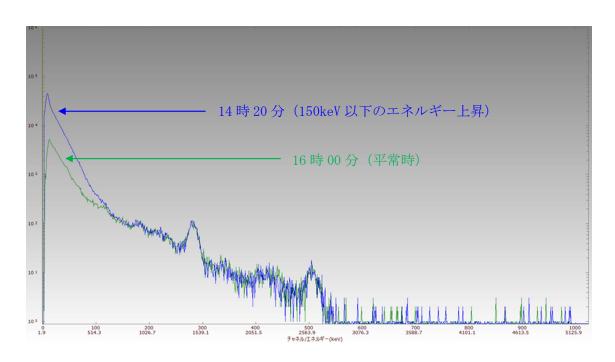
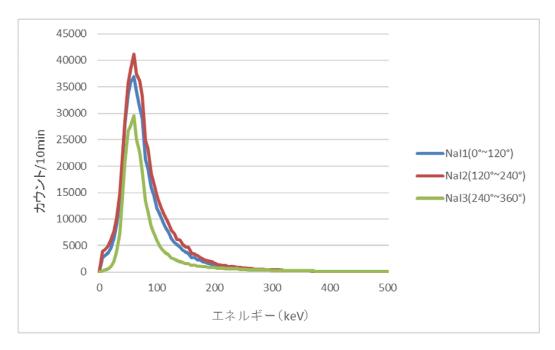
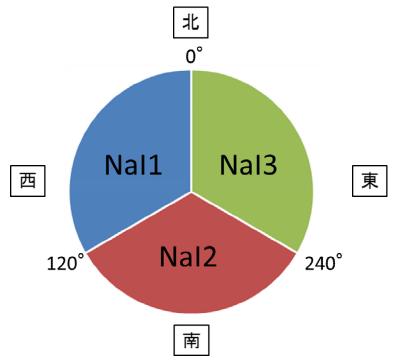



図4 8月7日スペクトル解析結果(草笛MS 10分間平均値)

(参考)


草笛MSには空間放射線の入射方向の特定が可能な方向特定可能型検出器が設置さ れており、図5のとおり、照射時には検出器1、2 (検出器1:北を0° とし反時計 回りに120°、検出器2:120°から反時計周りに240°)のカウント数が増加してい る。(実際の今回の照射場所は南南西方向に位置していた。)

方向特定可能型検出器による測定結果 図 5

【方向特定可能型検出器】

円筒型の検出器を120°の扇形に3分割し、計数値の比と飛来方向を関連付ける(あ らかじめ入射方向と各検出器の計数比の関係を作成しておくことで、計数比から入射 方向を推定する)ことが可能である。

方向特定可能型検出器の概念図 53 図 6

令和2年9月18日 静岡県環境放射線監視センター 中部電力株式会社浜岡原子力発電所

平常の変動幅の上限逸脱に係る原因調査報告(環境試料中の放射能)

(要旨)

令和2年度第2四半期に実施した環境試料中の放射能の測定において、原 乳が平常の変動幅の上限を超過したため、その原因について調査した。

調査の結果、浜岡原子力発電所からの影響ではなく、過去の核爆発実験等の影響に東京電力㈱福島第一原子力発電所から放出された放射性物質の影響が加わったものと推定した。

記

1 測定結果 (表中の括弧内の数値は検出下限値を表す)

表 1 原乳(掛川市: 7/10 採取、菊川市: 7/6 採取)

単位: Bq/kg 生 (131 I は Bq/L)

採取地点	測定機関	⁶⁰ Co	$^{131}{ m I}$	¹³⁴ Cs	¹³⁷ Cs	40K(参考)
	監視	* 1)	*	*	*	45.6 ± 0.3
掛川市	センター	(0.017)	(0.090)	(0.012)	(0.012)	(0.95)
下土方	中部	*	*	*	*	46.0 ± 0.3
	電力㈱	(0.016)	(0.081)	(0.011)	(0.011)	(0.93)
	監視	*	*	*	0.013 ± 0.004	44.0 ± 0.3
菊川市	センター	(0.017)	(0.097)	(0.011)	(0.011)	(0.95)
嶺田	中部	*	*	*	*	45.0 ± 0.3
	電力㈱	(0.019)	(0.074)	(0.014)	(0.014)	(1.0)
平常の変動幅		*	*	*	*	自然放射性
震災後の変	で動幅	*	* ∼ 0. 14	* ∼ 0. 43	$*\sim 0.45$	核種

注1)「*」は「検出されず」を示す。

2 原因調査

浜岡原子力発電所周辺環境放射能測定に係る測定法及び評価方法に基づき、 上限超過事象に影響を与えると考えられる下記の項目について調査を行った。

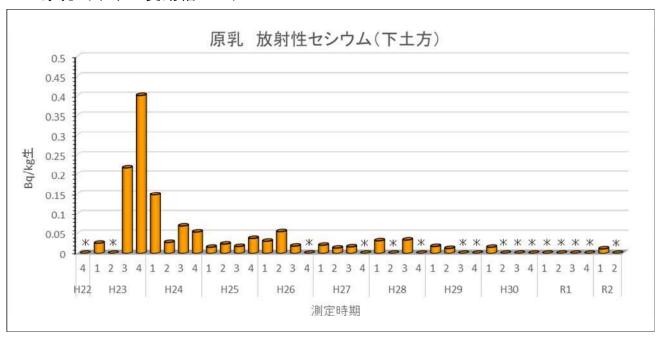
- (1) 発電所内のエリアモニタリング設備等の異常値及び発電所外への放出の状況
- (2) 発電所内に異常等が認められない場合
 - ・測定器及び関連機器の健全性
 - ・試料の採取方法及び前処理方法の妥当性(手順違い、他の試料等の混入等)
 - ・測定方法等の変更や測定器の更新による影響

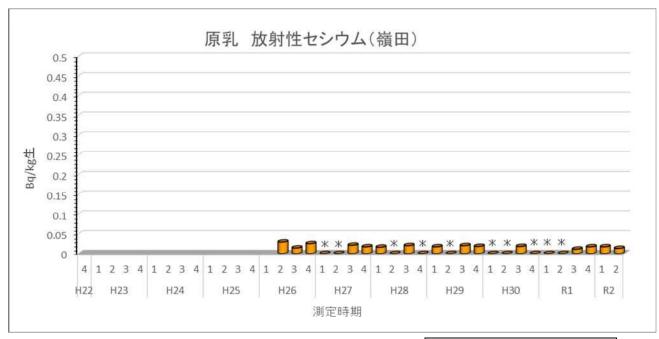
- ・測定地点周辺の環境の変化
- ・核爆発実験等による影響
- ・他の原子力施設からの影響
- ・発電所に由来しない放射性物質の持込、流入、接近等
- ・測定結果の経時的変化及び他の測定や他地点(試料)の測定結果
- ・検出された核種以外の人工放射性核種の検出状況

3 原因の推定

調査の結果、発電所内のエリアモニタリング設備等の測定に異常は認められず、発電所外への放出管理も適切に行われており、発電所からの影響ではない。

試料の採取方法や前処理方法等に問題はなかった。測定結果の経時的変化から、原乳中の放射性セシウム濃度は東電事故発生直後に上昇したが、年々減少しており、今回の結果は特異的なものではない(別紙参照)。また、他の試料も含め、セシウム137以外のγ線人工放射性核種は検出されていない。


以上により、原因は浜岡原子力発電所からの影響ではなく、過去の核爆発 実験等の影響に東京電力㈱福島第一原子力発電所から放出された放射性物質 の影響が加わったものと考えられる。


(別紙)

環境試料中の放射性セシウム*濃度の時系列変化

※Cs-134 と Cs-137 の合計量

1. 原乳 (平常の変動幅:ND)

*印は「検出されず」を示す。

注) 嶺田は平成26年度第2四半期から採取地点となった。

Ⅲ 添付3

令和 2 年 9 月 18 日 中 部 電 力 株 式 会 社 浜 岡 原 子 力 発 電 所

平常の変動幅の下限逸脱に係る原因調査報告(空間放射線量率)

令和2年7月及び8月において、一部のモニタリングステーション(以下、「MS」という)で空間放射線量率(以下、「線量率」という)の10分間平均値及び1時間平均値が平常の変動幅の下限を下回った。この要因は、自然変動(自然放射性核種の変動)と考えられるが、9月も同様に平常の変動幅の下限を下回る事象が発生しているため、9月の測定結果と併せて、第2四半期の調査結果として報告する。

1 状況

平常の変動幅の下限を下回った7月及び8月の測定地点及び線量率(10分間平均値及び1時間平均値)の最小値を表1及び表2に示す。白羽小学校MSの1時間平均値は、昨年度までの平常の変動幅も下回っている。なお、10分間平均値に関しては、今年度から測定計画に追加されたため、昨年度以前に平常の変動幅は設定されていない。当該測定地点の線量率の推移を図1~7に示す。

表 1 10 分間平均値

単位 (nGy/h)

測定地点	線量率(最/	小値)	平常の変動幅
佐倉三区	7月25日18時20分	36 (36. 4)	37~79
白羽小学校	7月26日12時10分	38 (38.3)	40~85
日初小子校	8月9日 15時30分	39 (38. 6)	40,000
地頭方小学校	7月10日11時40分	39 (39. 1)	40~80

表 2 1時間平均値

単位 (nGv/h)

測定地点	線量率(最小	値)	平常の変動幅
上ノ原	7月27日16時	43 (43.3)	44~84 (40~98) ¹⁾
白羽小学校	7月26日12時	39 (38.9)	40~80
日初小子仪	8月9日 16時	39 (38. 9)	$(40\sim 94)^{1}$

注1) 昨年度までの平常の変動幅

2 原因調査

平常の変動幅の下限を下回ったことから、測定器の健全性や当該期間に実施している 測定装置の演算部の更新による影響、線量率変動の傾向、測定地点周辺の環境の変化に ついて確認した。

(1) 測定器および関連機器の健全性

事象発生時は、線量率の指示値をリアルタイムで確認して、大きく低下していないことを確認した。週一回の現場確認では、測定装置の外観に異音や異臭など異状

は見られなかった。また、当該MSの保守点検は今年の6月から7月に掛けて実施 しており、問題がないことを確認している。

(2) 測定方法等の変更や測定器の更新による影響

MSの測定装置の演算部の更新は、保守点検の期間と合わせて実施している。表3に示す相対基準誤差(指示誤差)のとおり、更新前後の変化量が小さいため更新の影響はなかったと判断する。

表 3 相対基準誤差(指示誤差)

単位 (%)

測定地点	標準線源	更新前	更新後	変化量	判定基準
佐倉三区		+0.2	±0.0	-0.2	
白羽小学校		+1.0	+0.7	-0.3	
地頭方小学校	R a -226	+0.8	+0.2	-0.6	±10
上ノ原	(639nGy/h, at1m)	+2. 2	+1.0	-1.2	(社内基準)
中町		+0. 2	±0.0	-0.2	
桜ヶ池公民館		+1.8	-0.4	-2. 2	

(3)線量率変動の傾向

図2の白羽小学校MSの線量率は、測定装置の更新以降、低くなっており装置更新の影響のように見えるが、図1の佐倉三区MSの線量率も、白羽小学校MSと同じ傾向で低く推移している。その他の測定地点として、図3の地頭方小学校MSや図4の上ノ原MSの線量率も同じ傾向で推移している。このことから、平常の変動幅の下限を下回った要因は、測定装置の更新の影響ではなく自然変動によるものと考えられる。

(4) 測定地点周辺の環境の変化

当該MSにおいて、線量率の低下に寄与するような環境の変化は見られなかった。

3 まとめ

当該測定地点の測定器に異状や測定装置の更新による影響もなく、周辺環境の変化もなかった。白羽小学校MSの線量率は、装置更新以降、低くなっており装置更新の影響のように見えるが、その他の測定地点の線量率も同じ傾向で推移していた。

以上のことから、一部のMSの線量率が平常の変動幅の下限を下回った要因は、自然変動(自然放射性核種の変動)と考えられるが、9月も同様に平常の変動幅の下限を下回る事象が発生しているため、9月の測定結果と併せて、第2四半期の調査結果として報告する。

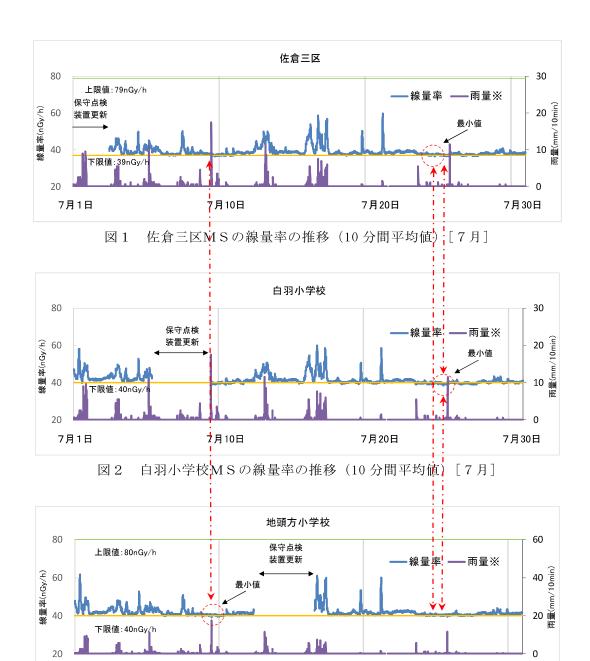


図3 地頭方小学校MSの線量率の推移(10分間平均値)[7月] ※ 発電所構内の雨量

7月20日

7月10日

7月1日

7月30日

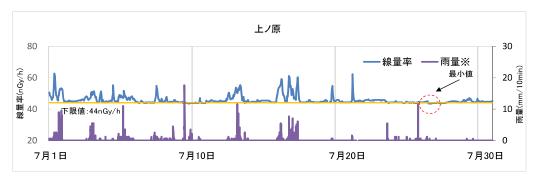


図4 上ノ原MSの線量率の推移(1時間平均値)[7月]



図5 白羽小学校MSの線量率の推移(1時間平均値)[7月]

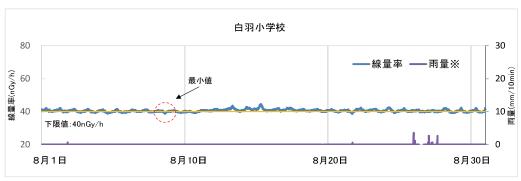


図6 白羽小学校MSの線量率の推移(10分間平均値)[8月]

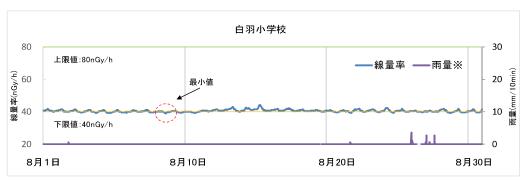


図7 白羽小学校MSの線量率の推移(1時間平均値)[8月]

※ 発電所構内の雨量

以上

令和2年9月18日 静岡県環境放射線監視センター

平常の変動幅の下限逸脱に係る原因調査報告(空間放射線量率)

(要旨)

令和2年7月10日、浜岡北小学校モニタリングステーション(以下「MS」という。) の空間放射線量率(10分間平均値)の値が、一時的に平常の変動幅の下限を下回った ため、その原因について調査した。

調査の結果、平常の変動幅の下限を下回った原因は、自然変動(自然放射性核種の変動)と考えられた。

1 測定結果

表1及び図1のとおり、浜岡北小学校MSで測定した空間放射線量率(10分間平均値)が、平常の変動幅の下限を下回った。

表1及び図1のとおり、令和2年7月10日の11時20分~21時50分までの間で、平常の変動幅の下限を4回下回った。なお、1時間平均値については、平常の変動幅の範囲内であった。

衣Ⅰ 空间	放射線里半(10分间半均恒)	平似:nGy/n
日時	7月10日 11時20分、11時30分、 18時40分、21時50分	平常の変動幅 (10 分間平均値)
測定値	39 (39. 3~39. 4)	40~92

表 1 空間放射線量率 (10 分間平均値) 単位:nGv/h

2 原因調査

(1) 測定地点周辺の環境の変化

図4のとおり、大雨の影響で隣接する浜岡小学校の校庭が広く浸水していることを監視カメラの映像で確認できた。

(2) 測定器等の健全性

当該事象発生後に現場点検を行い、測定器等に異常がないことを確認した。また、 現地の記録計の指示値とテレメータシステムで収集したデータとの間に相違がないことを確認した。

6月下旬に実施した測定器の保守点検においても異常はなく、測定値の変化につながるような設定変更等は行っていない。

これらのことから、測定器等の健全性は確保できていたと考えられる。

(3) 自然放射性核種の変動

図1から図3のとおり、当該時間帯前後の空間放射線量率は、平常の変動幅の下限付近を推移しており、雨水による遮蔽により一時的に下限を下回ったものと考えられる。

3 まとめ

浜岡北小学校MSにおいて平常の変動幅の下限を下回った原因は、大雨の影響により 局舎周辺が浸水したことで、雨水による遮蔽効果が生じたためと考えられる。

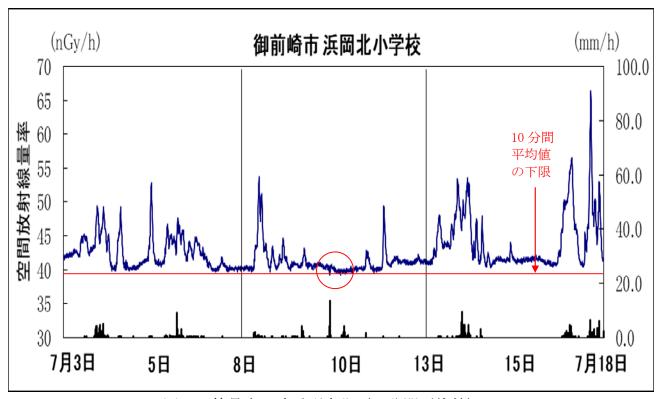


図1 線量率の時系列変化(10分間平均値)

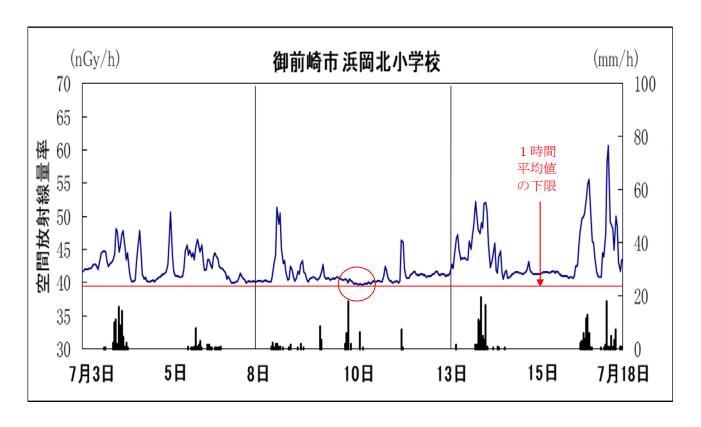
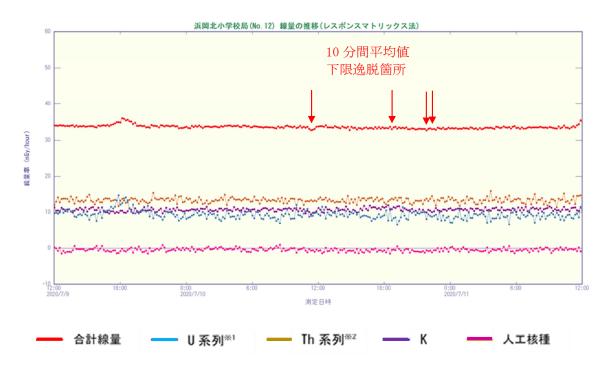



図2 線量率の時系列変化(1時間平均値)

%1~U(ウラン)系列: 238 U から 222 Rn(希ガス)を経て 206 Pb(安定)に至る自然放射性核種の崩壊系列 %2~Th(トリウム)系列: 232 Th から 220 Rn(希ガス)を経て 208 Pb(安定)に至る自然放射性核種の崩壊系列

図3 スペクトル解析結果 (浜岡北小学校MS)

図4 監視カメラの画像(令和2年7月10日11時30分)

Ⅳ 令和2年度浜岡原子力発電所周辺環境放射能測定計画

令和2年3月19日 静岡県環境放射能測定技術会

浜岡原子力発電所の安全確保等に関する協定書第4条第1項の測定計画を次のとおり 定める。

1 目的

浜岡原子力発電所周辺の環境放射能の測定は、次に掲げる目的の下、実施するものとする。

(1) 周辺住民等の被ばく線量の推定及び評価

浜岡原子力発電所の周辺住民等の健康と安全を守るため、平常時から、環境における浜岡原子力発電所起因の放射性物質又は放射線による周辺住民等の被ばく線量を推定し、評価する。

- (2) 環境における放射性物質の蓄積状況の把握
 - 浜岡原子力発電所からの影響の評価に資するため、平常時から、浜岡原子力発電所の運転により放出された放射性物質の環境における蓄積状況を把握する。
- (3) 浜岡原子力発電所からの予期しない放射性物質又は放射線の放出の早期検出及び 周辺環境への影響評価

浜岡原子力発電所から敷地外への予期しない放射性物質又は放射線の放出を検出することにより、浜岡原子力発電所の異常の早期発見に資する。

また、浜岡原子力発電所から予期しない放射性物質又は放射線の放出があった場合に、その影響を的確かつ迅速に評価するため、平常時モニタリングの結果を把握しておく。

(4) 緊急事態が発生した場合への平常時からの備え

緊急事態が発生した場合に、緊急事態におけるモニタリングへの移行に迅速に対応 できるよう、平常時から緊急事態を見据えた環境放射線モニタリングの実施体制を備 えておく。

- (5) 補足参考測定
 - (1)から(4)までの目的を達成する上で参考となるもの、浜岡原子力発電所からの影響を判断する上で参考となるもの、環境中の経時変化を把握する上で有効なもの又は測定技術の維持が必要と考えられるものについては、平常時から測定を行い、その結果を把握しておく。

2 対象範囲

測定を行う範囲は、陸上については浜岡原子力発電所を中心とした概ね半径 10km の地域とし、海上については浜岡原子力発電所の前面海域で概ね半径 10km の海域とする。

3 実施機関

測定は次に掲げる機関が行うものとし、御前崎市、牧之原市、掛川市及び菊川市は試料採取等において協力する。

- (1) 静岡県環境放射線監視センター
- (2) 中部電力株式会社浜岡原子力発電所

4 実施内容

1の目的ごとに実施する内容は、別記1に掲げるとおりとする。

5 測定方法等

測定方法等は、原子力規制庁が作成する「放射能測定法シリーズ」等を参考に別に定めるものとする。

6 実施計画

令和2年度の実施計画は、別記2に掲げるとおりとする。

7 測定結果の報告

技術会は、原則として四半期ごとに、各実施機関から測定結果の報告を受けることとする。

8 測定結果の評価

技術会は、実施機関から報告を受けた測定結果について、別に定める方法により評価 を行うものとする。

9 調査結果のまとめ

技術会は、測定結果及び評価結果をとりまとめ、調査結果書を作成する。

別記1 目的ごとの実施項目等

	П	一一一一一一一一一一一一	地中码	布
ができる。			ことが、アンドー・アンドー・アンドー・アンドー・アンドー・アンドー・アンドー・アンドー・	
引放外称単半の別と		7	Na1 ソノナアーショノ使口辞寺(こよの堪称) 測定	
環境試料中の放射能の 測定 ²⁾	大気中浮遊塵	γ線放出核種 3)	ゲルマニウム半導体検出器による機器分析	ダストモニタ採 取試料
	陸水	y 線放出核種 3 ^{3,4)} Sr-90	ゲルマニウム半導体検出器による機器分析 放射性ストロンチウム分析	
	農畜産物 海産生物	y 線放出核種 30-4) Sr-90	ゲルマニウム半導体検出器による機器分析 放射性ストロンチウム分析	
環境試料中の放射能の 測定 ²⁾	土壌	γ 線放出核種 ³⁾	ゲルマニウム半導体検出器による機器分析	
	海底土			
空間放射線量率の測定		7線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	NaI シンチレーション検出器等による連続 Mit	
		10 分間平均値 "	測定	
環境試料中の放射能の測定	大気中浮遊塵	α 級及び β 級 集塵中の全 α ・全 β 放射能比(1時間平均値) ¹⁾ 集塵中の全 β 放射能(1時間平均値) ¹⁾ 集塵終了 6 時間後の全 β 放射能(1時間平均値) ¹⁾⁵⁾	ダストモニタによる連続測定	
排水の全計数率の測定	排水	ッ線 10 分間平均値	放水口モニタによる連続測定	
環境試料中の放射能の 測定 ²⁾	農畜産物 海産生物	ッ線放出核種③	ゲルマニウム半導体検出器による機器分析	
	陸水	y 線放出核種 ³⁾ H-3 Sr-90	ゲルマニウム半導体検出器による機器分析 トリチウム分析 放射性ストロンチウム分析	
	養	y 線放出核種 ³⁾ Sr-90 Pu-238, Pu-239+240	ゲルマニウム半導体検出器による機器分析 放射性ストロンチウム分析 プルトニウム分析	
	海水	H-3	トリチウム分析	

⑤ 補足参考測定	精算線量の測定		y線 3か月間積算値	蛍光ガラス線量計による積算線量測定	
	環境試料中の放射能の 降下物 測定 2)	降下街	γ線放出核種 3)	ゲルマニウム半導体検出器による機器分析	
		指標生物(松葉)	γ線放出核種 30.40	ゲルマニウム半導体検出器による機器分析	
		海水	γ線放出核種 3)	ゲルマニウム半導体検出器による機器分析	
		大気中水分	Н-3	トリチウム分析	

注1) テレメータシステムによる演算値とする。

注2) 試料及び採取地点の選定にあたり、次の点を考慮する。

・ 測定の目的に適したものか。

毎年実施するものについては、継続的に採取が可能であるか。

農畜産物及び海産生物については、生産量や漁獲量から地域の代表性があるか。

探取計画全体における採取時期等のバランスがとれているか。

地域の要望があるか。

注 3) Co-60、Cs-134、Cs-137、その他検出された人工放射性核種を報告対象とする。また、測定の参考とするため、K-40, Be-7 などの自然放射性核種についても、試料の種類に応じ報告対 象に加えるが、評価の対象とはしない。

注 4)陸水、大根の葉部、原乳、藻類及び松葉については、I-131 を報告対象に加える。 注 5)集塵終了 6 時間後の全β放射能については、集塵中の全α・全β放射能比及び集塵中の全β放射能の測定結果を評価する場合の参考とする。

令和2年度実施計画

1 空間放射線量 (1)空間放射線量率

市名	地点名 モニタリングステーション名	測定機関	地点数	測定期間	備考
	白砂	県			
	中町				
	桜ヶ池公民館	中部電力			
	上ノ原	1 46 4677			
/hn >4 1+ +	佐倉三区	(D			
御前崎市	平場	県			
	白羽小学校	中部電力	14	通年	
	旧監視センター		11	(連続測定)	
草	草笛	県			
	浜岡北小学校				
	新神子				
牧之原市	地頭方小学校	中部電力			
掛川市	大東支所	県			
菊川市	菊川市水道事務所	ゲ			

(2) 積算線量

市名	地点名 名称	測定機関	地点数	測定期間	年測定数	備考
御前崎市	芹沢 西山 上比木 合戸東前 門屋石田 中尾 朝比奈原公民館	県 中部電力	12	4~6月 7~9月 10~12月	96	* 1
牧之原市 掛川市 菊川市	旧地頭方中学校 菅山保育園 鬼女新田公民館 千浜小学校 東小学校			1~3月		

^{※1 「1} 目的」の(5)による補足参考測定

2 環境試料中の放射能 (1) 陸上試料

(1) 陸	上試料											
分類	試料名	市名	<u>地</u> 点名 地名・名称	測定機関	地点数	測定時期	ν	年》 Sr-90		₩1 Pu	計	備考
		111/41	白砂	県			y	31 30	11 3	1 u	РΙ	
大気	大気中	御前崎市	中町 平場	中部電力県	5	通年						全α・全β放
	浮遊塵	#1	白羽小学校	中部電力		(連続測定)						射能
		牧之原市	地頭方小学校 白砂	<u>中部電力</u> 県								
大気	大気中	御前崎市	中町平場	中部電力	5	毎月	60				60	ろ紙を回収し
人人人	浮遊塵		白羽小学校	中部電力	υ	世月	00				00	測定
			地頭方小学校 市役所	中部電力				,,,,				注)2地点を交
陸水	上水	御前崎市	新神子	県	2	4, 7, 10, 1月	16	8 ^{注)}			24	互に年2回
三/八	上水	御前崎市	(市役所)::: (新神子):::	中部電力		(R6)						※2 5年に1回
		(m) to the to	下朝比奈	ū								
	土壌	御前崎市	新 伊 士 比木	県 中部電力	4	6, 9, 12, 3月	32				32	
工 4%		牧之原市				7 日	0	0		0	C	
土壌		牧之原市	菅山小学校 :(1地点)::::	ı		7月 ::::(R6)::::	2	2		2	6	※2 5年に1回
	土壌	掛川市	(1地点) (1地点)	県 中部電力	1	(R4) (R3)						(Puは最初の1
		菊川市	(1地点)::::			(R5)						回のみ。)
	玄米	御前崎市牧之原市	下朝比奈 笠名		2	10月	4	4			8	穀類
		掛川市	(1地点)	県		(R3)						1 - 1 -
	玄米		:(1地点):::: 嶺田	中部電力	1	(R5) 10月	2				2	穀類 ※2
		菊川市	(1地点)::::			(R4)	::::::					5年に1回
	すいか	御前崎市	::(1地点):::: 八千代	県	2	:::::(R6)::::: 7月					4	うり類
	9 (1//)1	柳削岬巾	中原	中部電力県	۷	7月	4				4	ソリ独
	キャベツ	御前崎市	合戸	中部電力	1	2月	2	2			4	
	白菜	御前崎市	雨垂 上ノ原	県	3	12月	6				6	葉菜類
		牧之原市	笠名	中部電力								
	レタス	菊川市	(1地点) (1地点)	県		(R3) (R4)						葉菜類 ※2
		2(3) 11 4	(1地点)::::	中部電力		(R5)						5年に1回
	たまねぎ	御前崎市	<u>池新田</u> 白浜	県中が電力	3	<u>5月</u> 1月	6				6	
農畜産物		牧之原市	堀野新田	中部電力		2月						鱗菜類
	白ねぎ	御前崎市	合戸	県 中部電力	1	12月	2				2	
	かんしょ	御前崎市	新神子	県 中部電力	1	9月	2				2	いも類
		御前崎市	洗井	県								
	大根	牧之原市	白浜 堀野新田	中部電力	3	1月	6	6			12	根菜類
		牧之原市		県中が奪力	1	11月	2				2	かんきつ類
			法ノ沢	中部電力				2				
	茶葉	御前崎市 新	新野 新谷	県	5	4月	10	2			16	
	ボ朱	牧之原市	笠名		٥	4月	10	2			10	
		菊川市	川上 ::(1地点):::	中部電力		(R4)::::						
	茶葉	菊川市	(1地点)::::			(R5)						※2 5年に1回
		掛川市	::(1地点):::: 下土方	県		(R6)						
	原乳		嶺田	中部電力	2	4, 7, 10, 1月	16	8			24	
雨水・ちり	降下物	御前崎市	池新田	県 中部電力	1	毎月	24				24	※ 3
地插 4 + ** *	松華	御治ば士	池新田	県	9	6, 9, 12, 3月	0.4				0.4	% 2
指標生物	松葉	御前崎市	平場則 白砂	中部電力	3	ひ, 3, 12, 3月	24				24	※ 3
	大気中		白砂 平場	県県								
大気	水分	御前崎市	中町	中部電力	4	毎月			48		48	※ 3
			上ノ原	中部電力	<u> </u>	合計	220	36	48	2	306	

 ※1 県と中電の測定数の合計

 ※2 「1 目的」の(4)によるバックグラウンドの把握のみを目的とした測定

 ※3 「1 目的」の(5)による補足参考測定

(2) 海洋試料

(2) 海 分類	<u>沣試料</u> 試料名	地点名	測定機関	地点数	測定時期		年測定			備考
分類	訊科名		側正機関	地点级	側疋時期	γ	Sr-90	H - 3	計	1佣 与
海底土	海底土 (表層土)	菊川河口 高松沖 尾高漁場 中根礁 御前崎港 浅根漁場 1,2号機放水口付近 取水口付近 3号機及び4号機放水口付近 5号機放水口付近	県 中部電力	10	5, 8, 11, 2月	80			80	
	しらす			1	4, 8, 10月	6	6		12	
	ひらめ			1	1月	2			2	魚類
	あじ			1	4,11月	4			4	AR 大貝
	かさご			1	11月	2	2		4	
	さざえ		県	1	1月	2	2		4	
海産生物	はまぐり	周辺海域	中部電力	1	1月	2			2	貝類
	かき			1	7月	2			2	ED +11 VE
	いせえび			1	10月 5月	2	2		4	甲殻類 頭足類
	たこ なまこ			1	5月 1月	2			2	頭足類 棘皮類
	ーなまこ わかめ			1	2月	2	2		4	海藻
海水	海水 (表層水)	菊川河口 高松沖 尾高漁場 中根礁 御前崎港 浅根漁場 1,2号機放水口付近 取水口付近 3号機及び4号機放水口付近 5号機放水口付近	県	10	5, 8, 11, 2月	80			80	* 3
		菊川河口 高松沖	中部電力	10	8月			4	4	
		(尾高漁場) (中根礁)			(R3)					
海水	海水 (表層水)	(御前畸港) (浅根漁場) (1,2等機放水中付近) (取水口付近) (海季縣及以對塊放水中付近) (海季縣及以對塊放水中付近)			(R4) (R5) (R6) 合計	188	14	4	206	※2 5年に1回

 ※1 県と中電の測定数の合計

 ※2 「1 目的」の(4)によるバックグラウンドの把握のみを目的とした測定

 ※3 「1 目的」の(5)による補足参考測定

3 排水の全計数率

地点名	測定機関	地点数	測定期間	備考
1,2号機放水口モニタ				
3号機放水口モニタ	中部電力	4	通年	
4号機放水口モニタ	中部电力	4	(連続測定)	
5号機放水口モニタ				

V 浜岡原子力発電所周辺環境放射能測定に係る測定法及び評価方法

令和2年3月19日 静岡県環境放射能測定技術会

浜岡原子力発電所周辺環境放射能測定計画に基づき実施する測定について、測定法 及び測定結果の評価方法を次のとおり定める。

第1 測定法

1 測定方法

(1) 空間放射線

① 線量率

項目	内 容	備考
測定対象	γ (X) 線 (50keV~3MeV)	
測定方法	NaI シンチレーション検出器等による連続測定 放射能測定法シリーズ**「連続モニタによる環境γ線測 定法」に準拠	2分間平均値、10分 間平均値及び1時間 平均値をテレメー タにより取得する。
測定器	温度補償型3インチ×3インチNaI(T1)シンチレーション 検出器	
温度管理	24 時間空調(検出器 25℃±2℃)	
測定範囲	バックグラウンドレベル~10⁴nGy/h	
エネルギー特性補償	G(E) 関数荷重演算方式	
線量率換算定数	テレメータシステムへパルスを出力する方式の場合、出力 パルスに対し、通常型検出器にあっては44.0cpm/(nGy/h)、方向特定可能型検出器にあっては40.4cpm/(nGy/h)*とする。	※ ㈱日立製作所 製に限る。
テレメータへの送信間隔	2 分ごと	
宇宙線成分の取扱い	宇宙線寄与分としての定数加算をしない。	H23 年度から定数加 算を廃止
測定高さ	局舎屋根上に検出器を設置する場合は地上約 3 メートル、地表面上に検出器を設置する場合は1メートルとする。	
その他	緊急時用及び NaI (T1) シンチレーション検出器の測定で欠測が生じた場合の代替として、電離箱検出器等を併設する。	

② 積算線量

項目	内 容	備考
測定対象	γ (X) 線 (30keV~3MeV)	
測定方法	蛍光ガラス線量計による積算線量測定 放射能測定法シリーズ「蛍光ガラス線量計を用いた環境 γ線測定法」に準拠	
測定器	蛍光ガラス線量計(RPLD)	
素子数	測定機関ごとに1地点あたり5素子配置	静岡県と中部電力
素子の更新頻度	5年	㈱浜岡原子力発電 所の素子は、同じ収
収納箱	塩化ビニル製(内容器:ポリウレタン製)	納箱に挿入する。
測定範囲	10 μ Gy∼10Gy	
積算期間	約3か月間	
測定結果の検定方法	Grubbs の棄却方法(原則 1 回)	
測定高さ	地上 約2.5~3.5メートル	

(2) 環境試料中の放射能

全α・全β放射能

項目	内 容	備考
測定対象	α線及びβ線	
測定方法	ダストモニタによる連続測定 放射能測定法シリーズ「全ベータ放射能測定法」及び「大 気中放射性物質のモニタリングに関する技術参考資料」を 参考に、大気中浮遊塵の集塵中の全α・全β放射能比、集 塵中の全β放射能及び集塵終了6時間後の全β放射能を測 定	2 分間平均値、10 分間 平均値及び1時間平 均値をテレメータに より取得する。
測定器	α線: ZnS(Ag)シンチレーション検出器 β線:プラスチックシンチレーション検出器	
集塵時間	6 時間	
集塵方法	平面集塵(ろ紙間欠自動移動方式)	
使用ろ紙	HE-40T(ロール状)	
大気吸引量	約 100L/min	
測定値	(1) 集塵中の全 α ・全 β 放射能比及び全 β 放射能時刻 i における放射能濃度を N_{Ri} とすると $N_{Ri}(Bq/m^3) = \frac{\left(\frac{A1}{100} \times 0.5\right) \times \frac{A2}{100} \times \frac{\mathcal{J}^2 \times 1}{1000}}{\left(\frac{A1}{100} \times 0.5\right) \times \frac{A2}{100} \times \frac{\mathcal{J}^2 \times 1}{1000}}$ ここで、時刻 i の全 α 放射能を $N_{R\alpha i}$ 、全 β 放射能を $N_{R\beta i}$ とすると、全 α 全 β 放射能比 N_i は $N_i = \frac{N_{R\beta i}}{N_{R\alpha i}}$ となる。 (2) 集塵終了 6 時間後の全 β 放射能集度を N_{Si} とすると N_{Si} とすると N_{Si} (Bq/m^3) = $\frac{1}{(\frac{A1}{100} \times 0.5) \times \frac{A2}{100}} \times \frac{\mathcal{J}^2 \times 1}{1000}$ となる。 A1:機器効率 (%) A2:捕集効率 (%) BG:バックグランド計数率	
テレメータへの送信間隔	2分ごと	

② 核種分析

アγ線放出核種

項目	内 容	備考
対象核種	γ線放出核種	
測定方法	ゲルマニウム半導体検出器による機器分析 放射能測定法シリーズ「ゲルマニウム半導体検出器によ るガンマ線スペクトロメトリー」に準拠	
前処理方法	放射能測定法シリーズ「ゲルマニウム半導体検出器等を 用いる機器分析のための試料の前処理法」に準拠 詳細については、「2 試料の採取・前処理方法」参照	
測定器	ゲルマニウム半導体検出器	
	①浮遊塵:灰化物(集塵ろ紙1か月分)	
	②降下物:蒸発残渣物(1か月分)	
	③陸 水:蒸発残渣物(20L分)(⑦を除く。)	
	④海 水:二酸化マンガン法による沈殿物(10L分)	
測定試料形態	⑤土壌、海底土:乾燥細土(容器高さ5cm分)	
	⑥農畜産物、海産生物、指標生物:灰化物(20~40g 灰程度) (⑦を除く。)	
	⑦陸水、大根(葉部)、原乳、藻類及び松葉中の I-131 並び に「緊急事態が生じた場合への平常時からの備え」を目 的とした測定試料については直接法(2L マリネリ容器)	
測定容器	U−8 容器 マリネリ容器(直接法)	
測定時間	20,000 秒(I-131 測定用) 50,000 秒(直接法以外) 80,000 秒(I-131 以外の直接法)	

【報告対象核種】

対象核種	半減期	主な着目エネルギー	生成反応	備考
		(keV)		
60Co(コバルト 60)	5. 2719 年	1332. 470	放射化生成物	
¹³¹ I (ヨウ素 131)	8.040 日	364. 480	核分裂生成物	
¹³⁴ Cs(セシウム 134)	2.062年	604. 66	放射化生成物	
¹³⁷ Cs (セシウム 137)	30.174年	661. 638	核分裂生成物	
⁷ Be(ベリリウム 7)	53. 29 日	477. 593	自然放射性核種	
⁴⁰ K(カリウム 40)	12.77 億年	1460.75	自然放射性核種	

⁽注)上記以外の人工放射性核種が検出された場合には報告対象となる。

【その他着目すべき核種】

対象核種	半減期	主な着目エネルギー	生成反応	備考
		(keV)		
⁵¹ Cr(クロム 51)	27.701 日	320. 0761	放射化生成物	
⁵⁴ Mn(マンガン 54)	312. 20 日	834. 827	放射化生成物	
⁵⁸ Co(コバルト 58)	70.78 日	810. 755	放射化生成物	
⁵⁹ Fe(鉄 59)	44. 56 日	1099. 224	放射化生成物	
¹³³ I (ヨウ素 133)	20.8 時間	529. 872	核分裂生成物	

⁽注) 上記の核種は、中部電力における放出管理上の対象核種である。

イ ストロンチウム 90

項目	内 容	備考
対象核種	⁹⁰ Sr(半減期:28. 74 年) ⁹⁰ Y (半減期:64. 1 時間)	⁹⁰ Sr の娘核種である ⁹⁰ Y を測定
測定方法	放射性ストロンチウム分析 放射能測定法シリーズ「放射性ストロンチウム分析法」 に準拠	
測定器	低バックグラウンド 2π ガスフロー計数装置	
前処理方法	イオン交換法 詳細については、「2 試料の採取・前処理方法」参照	
測定容器	ステンレススチール皿	
試料形態	放射化学的単離物	
測定時間	80 分	

ウ トリチウム

項目	内 容	備考
対象核種	³H(半減期:12.33 年)	
測定方法	トリチウム分析 放射能測定法シリーズ「トリチウム分析法」に準拠	
測定器	低バックグラウンド液体シンチレーション計数装置	
前処理方法	蒸留抽出 詳細については、「2 試料の採取・前処理方法」参照	
測定容器	100mL テフロンバイアル	
試料形態	水(蒸留)	
使用シンチレータ	ウルチマゴールド LLT(試料:シンチレータ=5:5 混合)	採取量不足の場合は この限りではない。
測定時間	10 分×20 回×3 サイクル	

エ プルトニウム 238 及びプルトニウム 239+240

項目	内 容	備考
対象核種	²³⁸ Pu(半減期:87.7年) ²³⁹ Pu(半減期:2.411万年)+ ²⁴⁰ Pu(半減期:6,563年)	²³⁹ Pu+ ²⁴⁰ Pu は両核種 の和を求める方法で ある。
測定方法	プルトニウム分析 放射能測定法シリーズ「プルトニウム分析法」に準拠	
測定器	シリコン半導体検出器	
前処理方法	陰イオン交換法 詳細については、「2 試料の採取・前処理方法」参照	
測定容器	ステンレス鋼板	
試料形態	電着物	
測定時間	24 時間	

(3) 排水の全計数率

項目	内 容	備考
測定対象	γ (X) 線	
測定方法	放水口モニタによる連続測定	2 分間平均値及び 10 分間平均値を取得す る。
測定器	3インチ×3インチ Na I (Tl)シンチレーション検出器	
測定範囲	バックグラウンドレベル~3×10 ⁴ cps	
テレメータへの送信間隔	10 分ごと(緊急時は 2 分ごと)	

※ 「放射能測定法シリーズ」は、文部科学省又は原子力規制庁が作成した環境放射線モニタ リングのマニュアルで、放射線・放射能の測定・分析の際の手順を定めたものとして自治体 等で用いられている。このほかに、技術情報を広く共有することを目的とした「技術参考資 料」が作成されている。

2 試料の採取・前処理方法

試 料	採取・前処理方法等	単 位	備 考 1)
大気中浮遊塵	長尺ろ紙(HE-40T)に捕集し、灰化	${ m mBq/m^3}$	
	マリネリ容器に入れ直接測定	Bq/L	$^{131}{ m I}$
7+:-	加熱し、蒸発濃縮	mBq/L	
陸水(上水)	蒸発濃縮物から放射化学的に単離(イオン交換法)	mBq/L	90Sr
	素留 蒸留	Bq/L	³ H
	表層土を採土器を用いて採取し、乾燥後、ふるい分け	Bq/kg 乾土	<u></u>
	乾燥細土から放射化学的に単離(イオン交換法)	Bq/kg 乾土	⁹⁰ Sr
土 壌	乾燥細土から放射化学的に単離(陰イオン交換法)し、		²³⁸ Pu、
	電気化学的に分離	Bq/kg 乾土	²³⁹⁺²⁴⁰ Pu
	全量を灰化		
玄 米	灰化物から放射化学的に単離(イオン交換法)	mē	90Sr
ナいか	可食部を乾燥・灰化		
7 4 73	洗浄後、可食部を乾燥・灰化		
キャベツ	灰化物から放射化学的に単離(イオン交換法)		⁹⁰ Sr
			- 31
英	洗浄後、可食部を乾燥・灰化		
こまねぎ	洗浄後、可食部を乾燥・灰化		
自ねぎ	洗浄後、可食部を乾燥・灰化	Bq/kg 生	
らんしょ	洗浄後、可食部(皮は残す)を乾燥・灰化	nic.	
て根(葉部)	洗浄後、マリネリ容器に入れ直接測定		$^{131}{ m I}$
大根(根部)	洗浄後、細根を取り除き、乾燥・灰化		
(1) (1)	灰化物から放射化学的に単離(イオン交換法)		90Sr
タ かん	可食部(皮を除く)を乾燥・灰化		
La -+	茎、枝等を除いた葉部を乾燥・灰化		
葉	灰化物から放射化学的に単離(イオン交換法)		⁹⁰ Sr
	マリネリ容器に入れ直接測定	Bq/L	131 T
泵 乳	全量を乾燥・灰化		<u> </u>
V 4n	灰化物から放射化学的に単離(イオン交換法)	Bq/kg 生	⁹⁰ Sr
タエサックエーナ ナ か)		D / 2	31
锋下物(雨水・ちり)	大型水盤で1か月分採取し、加熱し、蒸発濃縮	Bq/m²	131 -
菜 菜	茎、枝等を除いた葉部をマリネリ容器に入れ直接測定	Bq/kg 生	¹³¹ I
	茎、枝等を除いた葉部を乾燥・灰化		
大気中水分	シリカゲルに1か月分採取し、加熱し採取後、蒸留	Bq/m³(大気)	³ H
		Bq/L(水分)	ļ
毎底 土	表層土を採土器を用いて採取し、乾燥後、ふるい分け	Bq/kg 乾土	
۲ ۱	洗浄後、乾燥・灰化		
, ら す	灰化物から放射化学的に単離(イオン交換法)		⁹⁰ Sr
トらめ	洗浄後、可食部(肉部)を乾燥・灰化		
う じ	洗浄後、可食部(肉部)を乾燥・灰化	•••	
	洗浄後、可食部(肉部)を乾燥・灰化		
ゝさご	灰化物から放射化学的に単離(イオン交換法)		⁹⁰ Sr
	可食部(内臓を除き体液は含まない)を乾燥・灰化		91
さざえ	<u>}</u>		⁹⁰ Sr
 L ナ	灰化物から放射化学的に単離(イオン交換法)		s Sr
はまぐり	可食部(体液も含む)を乾燥・灰化	Bq/kg 生	
) き	可食部(体液も含む)を乾燥・灰化		
\ せえび	可食部(肉部)を乾燥・灰化		
_,	灰化物から放射化学的に単離(イオン交換法)		90Sr
<u> </u>	洗浄後、可食部(頭部,内臓,目,口を除く)を乾燥・灰化		
こまな	洗浄後、可食部(内臓を除く)を乾燥・灰化		
	洗浄後、茎を除き、マリネリ容器に入れ直接測定		$^{131}{ m I}$
つかめ	洗浄後、茎を除き、乾燥・灰化	mē	
7 -	灰化物から放射化学的に単離(イオン交換法)		⁹⁰ Sr
		- /-	NT.
		D~/I	
毎 水	表面海水を採取後、化学的に共沈(二酸化マンガン法) 蒸留	mBq/L Bq/L	3H

注1) 特に断りのないものについては、ヨウ素131以外のγ線放出核種を対象としている。

注 2)陸水、農畜産物及び海産生物のうち、「緊急事態が発生した場合への平常時からの備え」を目的とした γ 線放出核種分析を対象とする。

3 測定値の表示方法

実施	項目	測定対象	単 位	表示方法
空間放射線量率	⊠の測定	γ線	nGy/h	整数 (小数第1位四捨五入)
積算線量の測定	3	γ線	mGy(90 日換算値)	小数第2位 (小数第3位四捨五入)
環境試料中の放射能の測定	大気中浮遊塵	α線、β線	無次元 (集塵中の全 α ・全 β 放射 能比) Bq/m³ (集塵中の全 β 放射能及び 集塵終了 6 時間後の全 β 放射能)	有効数字2桁 (3桁目四捨五入)
		γ線放出核種	mBq/m³	原則として有効数字 2 桁* (3 桁目四捨五入)
	農畜産物 海産生物	γ線放出核種 Sr-90	Bq/kg 生	
	陸水	γ線放出核種 H-3 Sr-90	mBq/L (γ線放出核種、Sr-90) Bq/L (H-3)	※ 測定値は標準偏差の 有効数字1桁目までを記 載する。(測定値が3桁
	土壤	y線放出核種 Sr-90 Pu-238, Pu-239+240	Bq/kg 乾土	以上となることもあ る。)
	海底土	γ線放出核種	Bq/kg 乾土	
	降下物	γ線放出核種	Bq/m ²	
	指標生物 (松葉)	γ線放出核種	Bq/kg 生	
	大気中水分	H-3	Bq/m³ (大気中) Bq/L (捕集水中)	
排水の全計数 率の測定	排水	γ線	cps	有効数字 2 桁 (3 桁目四捨五入)

4 測定結果の表記方法

(1) 「検出されず」と「検出限界未満」

ア 「検出されず」

「測定値 X_A 生標準偏差 σ 」と表記される測定については、測定値 X_A が 3σ 未満 $(X_A < 3\sigma)$ の場合、「検出されず」と表記する。

イ 「検出限界未満」

ダストモニタによる全α放射能及び全β放射能の測定については、測定値 X_a が $3\sqrt{2}\sigma_b$ 未満 $(X_a<3\sqrt{2}\sigma_b)$ の場合、「検出限界未満」と表記する。

(2) 各機関の測定結果の取扱

1つの測定(採取)地点に対し、県と中部電力が同じ測定を行う場合においては、両者の測定結果を採用することとし、「 $A\sim B$ 」(2者の測定値が $A \geq B$ でA < B の場合)と表記する。

5 測定目標値

測定目標値とは、平常時モニタリングの目的を実現するため、現在のモニタリングの技術的水準を踏まえ、最低限測定することが必要な検出下限値をいう。 測定及び試料ごとの測定目標値を以下に示す。

(1) 周辺住民等の被ばく線量の推定及び評価

ア ゲルマニウム半導体検出器による機器分析

試 料		測定目	目標値		単位	供試量
B=V 1-1	Co-60	I-131	Cs-134	Cs-137	714	測定時間
大気中浮遊塵	0. 02	_	0.02	0.02	mBq/m³	$4 \times 10^3 \text{m}^3$
八双十仔近座	0.02		0.02	0.02		50,000秒
陸水	8	_	8	8	mBq/L	20L
座水	0		O	0	IIIDQ/ L	50,000 秒
陸水(直接法)		0. 2			Bq/L	2L
座小 (直接伝)	_	0. 2				20,000 秒
農産物・海産生物	0. 2		0. 2	0. 4	D /1 /4-	灰 40g 相当
展座物 一個座生物	0. 2	_	0. 2	0.4	Bq/kg 生	50,000 秒
農産物·海産生物		0.8			D -: /1: #	2×10 ³ cm ³ 相当
(直接法)	_	0.8	_	_	Bq/kg 生	20,000 秒
百分	0 1		0.1	0.0	Bq/kg 生	5L
原乳	0. 1	_	0. 1	0. 2		50,000 秒
百到 (古拉洪)	0.0			D. /I	2L	
原乳(直接法)		0. 2	_	_	Bq/L	20,000 秒

イ 放射性ストロンチウム分析

試料	測定目標値	単位	供試量
p4 14	Sr-90	平江	測定時間
陸水	0.4	mBq/L	100L
座水	0.4	IIIDQ/ L	80 分
農産物·海産生物	0. 2	Bq/kg 生	灰 10g 相当
長座初"两座王初	0. 2	Dq/ kg 土	80 分
原乳	0. 2	Bq/kg 生	灰 10g 相当
冰 和	0. 2	Dq/ kg 生.	80 分

(2) 環境における放射性物質の蓄積状況の把握 ゲルマニウム半導体検出器による機器分析

試料	測定目標値	単位	供試量
叶	Cs-137	中世	測定時間
土壌・海底土	3	Bq/kg 乾土	100g 乾土
上埭 "	3	DQ/ Kg 毕4工.	50,000 秒

(3) 緊急事態が発生した場合への平常時からの備え

ア ゲルマニウム半導体検出器による機器分析

⊒ N Jol	測定目標値)\\ \	供試量	
試 料	Co-60	Cs-134	Cs-137	単位	測定時間	
農産物·海産生物	0.2	0.2	0.4	D a /1- a /-	2×10 ³ cm ³ 相当	
(直接法)	0. 2	0. 2	0. 4	Bq/kg 生	80,000 秒	
原乳(直接法)	0. 2	0. 2	0. 4	D /I	2L	
原孔 (巨)安伝)	0. 2	0.2	0. 2	0. 1	Bq/L	80,000 秒
陸水(直接法)	80	80	80	∞D α /I	2L	
座小 (巨)	60	80	80	mBq/L	80,000秒	
土壌	3 3 3 Bq	Da/Ira 故上	100g 乾土			
上坡	3	J	ა	Bq/kg 乾土	50,000 秒	

イ 放射性ストロンチウム分析

試 料	測定目標値	単位	供試量
武 科	Sr-90	半仏	測定時間
陸水	0. 4	mBq/L	100L
陸水	0. 4	IIIDQ/ L	80 分
土壌	0. 4	D a /1- a 故上	100g 乾土
上 ·表	0. 4	Bq/kg 乾土	80 分

ウ トリチウム分析

試 料	測定目標値	単位	供試量
叶	H-3		測定時間
陸水・海水	か。 がまた 1	D ~ /I	50mL
座小・伊小	1	Bq/L	10 分×20 回×3 サイクル

エ プルトニウム分析

試 料	測定目	測定目標値 単位		供試量
	Pu-238	Pu-239+240	中世	測定時間
土壌	0.04	0.04	Bq/kg 乾土	50g 乾土
上坡	0.04 0.04		DQ/ Kg 毕4.1.	24 時間

(4) 補足参考測定

ア ゲルマニウム半導体検出器による機器分析

試 料		測定目標値			単位	供試量
11人 个十	Co-60	I-131	Cs-134	Cs-137	半江	測定時間
降下物	0.8		0.8	0.8	$\mathrm{Bq/m^3}$	1 か月分
	0.8		0.8	0.0	DQ/ III	50,000 秒
松葉	0. 2	_	0. 2	0. 4	Bq/kg 生	灰 40g 相当
140未	0. 2		0. 2	0.4		50,000 秒
松葉(直接法)		0.8			D /1_ #-	2×10 ³ cm ³ 相当
松来(巨体体)		0.0	_		Bq/kg 生	20,000秒
海水	8		0	0	mBq/L	10L
一一一	0		8 8	8	IIIDQ/ L	50,000 秒

イ トリチウム分析

試料	測定目標値	単位	供試量
	H-3	平江	測定時間
大気中水分	1	Bq/L	50mL
(捕集水)	1	Dq/ L	10 分×20 回×3 サイクル
大気中水分	0.05	D a /m³	50mL
(空気)	0.05	$\mathrm{Bq/m^3}$	10 分×20 回×3 サイクル

6 測定等の委託

測定等(試料の前処理を含む。)を委託する場合には、委託先のデータの品質が 適切な方法により十分なレベルを確保していることを調査する。

第2 評価方法

1 測定値の変動と平常の変動幅

測定値は、主に以下の原因により変動が起こりうる。

- (1) 試料の採取及び処理方法、測定器の性能、測定方法等の測定条件の変化
- (2) 降雨、降雪、雷、積雪等の気象要因並びに地理及び地形上の要因等の自然条件の変化
- (3) 核爆発実験等の影響
- (4) 医療及び産業用の放射性同位元素等の影響
- (5) 原子力施設の運転状況等の変化

一方、原子力発電所の通常運転時又は運転停止時であって、測定条件等が適切に 管理されている場合においては、(3)及び(4)の原因による測定値の変動を除き、測 定値の変動がある一定の幅の中に収まると考えられる。この幅を「平常の変動幅」 という。

平常の変動幅は、別記1に記載の方法により設定し、年度ごとに見直すこととする。

2 原因調查等

測定実施機関は、測定値が平常の変動幅内に収まっているかどうかを確認し、平常の変動幅を逸脱した場合は、別記2に記載の方法により原因調査等を行うものとする。

技術会は、測定実施機関が行った原因調査等の報告を受け、それが妥当であるかを確認する。

3 測定結果の評価

測定値が平常の変動幅の上限を超過した場合、原因調査の結果から、浜岡原子力発電所からの環境への影響の有無を評価する。

評価の対象とする測定は、別記3に掲げるとおりとする。

4 被ばく線量の推定及び評価

3の評価の結果、浜岡原子力発電所からの影響があったと評価した場合(影響があった可能性を否定できないと評価した場合を含む。)、別記4に記載の方法により、浜岡原子力発電所周辺住民等の被ばく線量の推定及び評価を行う。

5 異常事態の対応

常時監視している空間放射線量率等の測定値が上昇し、事業者から発電所内で異

常等があった旨の通報を受けた場合や空間放射線量率のスペクトル解析により発電所からの影響を示唆する測定値を検出した場合、その他これらに類する事象が発生した場合には、空間放射線量率等の監視の強化並びに環境試料の採取及び測定を拡充する。**

また、必要に応じ、浜岡原子力発電所周辺住民等の被ばく線量の推定及び評価を行う。

※ モニタリングステーションのデータ確認を頻繁に行うことやダストモニタのろ紙送り間隔を短縮することに加え、可搬型モニタリングポスト等を設置することにより、空間放射線量率等の分布及び経時的変化を把握する。また、発電所の状況や時期に応じ、適当な環境試料を選定し、採取及び測定数を増やす。

別記1 平常の変動幅の設定方法

1 共通事項

測定値は、統計処理した結果が正規分布ではないことから、過去の一定期間における最小値と最大値の範囲を平常の変動幅とする。

ただし、平常の変動幅の設定にあたっては、次の点を考慮する。

- 自然条件以外の原因で平常の変動幅を外れた特異的な測定値は対象データから 除くこととする。
- ・ 測定環境の変化等(測定地点周辺の環境の変化、測定器の更新等)に伴い、測定値に有意な変化が生じた場合には、必要に応じて変化前の測定値を合理的な方法により補正して求めた値を対象データとする。

なお、全ての測定対象について平常の変動幅を設定するが、過去の測定が規定した期間に満たない場合は「過去の値」と表記することとする。

2 空間放射線量、大気中浮遊塵の放射能(連続測定)及び放水口モニタ

空間放射線量、大気浮遊塵の放射能(連続測定)及び放水口モニタに係る平常の 変動幅を設定するための対象期間は、過去5年間とする。

なお、測定地点ごとに自然放射性核種の変動状況が異なることから、測定地点ごとに平常の変動幅を設定することとする。

3 環境試料中の放射能(大気中浮遊塵の放射能(連続測定)を除く。)

平成23年3月11日に発生した東北地方太平洋沖地震を起因とする東京電力㈱福島第一原子力発電所事故(以下「東電事故」という。)では、環境中に放射性物質が多量に放出され、本技術会の対象地域もその影響を受けることとなった。

空間放射線量とは異なり、環境試料中の放射能の測定結果は、現在も東電事故の 影響が残存していることを示唆するものとなっている。

このことから、環境試料中の放射能(大気中浮遊塵の放射能(連続測定)を除く。) については、東電事故以前の測定値を基に、試料の種類ごとに平常の変動幅を設定 することとし、その対象期間を東電事故以前の5年間とする。

なお、試料の種類が同一であっても、性状等が明らかに異なる場合は、それらを 分けて設定することとする。

また、東電事故以降の測定値の最小値と最大値の範囲を「震災後の変動幅」とし、平常の変動幅を上回った場合に実施する原因調査の参考とする。

別記2 平常の変動幅を逸脱した場合の原因調査等の方法

1 平常の変動幅の上限を上回った場合の対応

(1) 大気中浮遊塵の放射能(連続測定)以外

測定値が平常の変動幅の上限を上回った場合、測定実施機関は次の手順で調査を行い、その原因を特定する。ただし、評価の対象としない測定については、ウの調査のみを実施する。

- ア 発電所内の情報を収集するとともに、エリアモニタリング設備等^{*}の異常値 及び発電所外への放出(管理放出を含む。)の状況を調査する。
 - ※ エリアモニタリング設備等とは、発電所内の格納容器雰囲気モニタ、燃料交換エリア 換気モニタ、モニタリングポスト等をいう。
- イ アの調査の結果、発電所内に異常等が認められた場合、空間放射線量率等の 監視の強化並びに環境試料の採取及び測定を拡充する。**

また、技術会は臨時会等を開催し、対応を協議する。

- ※ モニタリングステーションのデータ確認を頻繁に行うことやダストモニタのろ紙送り間隔を短縮することに加え、可搬型モニタリングポスト等を設置することにより、空間放射線量率等の分布及び経時的変化を把握する。また、発電所の状況や時期に応じ、適当な環境試料を選定し、採取及び測定数を増やす。
- ウ アの調査の結果、発電所内に異常等が認められない場合は、次に掲げる事項 の中から必要な調査を実施する。
 - ① 降雨等の気象要因による自然放射性核種の変動
 - ② 測定器及び関連機器の健全性
 - ③ 試料の採取方法及び前処理方法の妥当性(手順違い、他の試料等の混入等)
 - ④ 測定方法等の変更や測定器の更新による影響
 - ⑤ 測定地点周辺の環境の変化
 - ⑥ 核爆発実験等による影響
 - ⑦ 非破壊検査等の放射線を利用した事業活動
 - ⑧ 周辺での医療用放射線源の使用や放射性医薬品を投与された患者の接近
 - ⑨ 他の原子力施設からの影響
 - ⑩ 発電所に由来しない放射性物質の持込、流入、接近等
 - ① 測定結果の経時的変化及び他の測定や他地点(試料)の測定結果
 - ② 検出された核種以外の人工放射性核種の検出状況
 - ③ その他
- エ ウの調査により原因を特定できない場合は、発電所からの影響があった可能 性を否定できないと考え、その当否について技術会に諮るものとする。

(2) 大気中浮遊塵の放射能(連続測定)

集塵中の全 α ・全 β 放射能比と集塵中の全 β 放射能の両方の測定結果が同時に 平常の変動幅を上回った場合、測定実施機関は(1)と同様の手順で調査を行い、 その原因を特定する。このとき、集塵終了6時間後の全 β 放射能の測定結果も参 考にする。

2 平常の変動幅の下限を下回った場合の対応

(1) 空間放射線量率及び排水の全計数率

測定値が平常の変動幅の下限を下回った場合、測定実施機関は次に掲げる事項の中から必要な調査を行い、その原因を特定する。

- ① 降雨等の気象要因による自然放射性核種の変動
- ② 測定器及び関連機器の健全性
- ③ 測定方法等の変更や測定器の更新による影響
- ④ 測定地点周辺の環境の変化
- ⑤ 車両等の遮蔽物の存在
- ⑥ その他

(2) (1)の測定以外

測定値が平常の変動幅の下限を下回った場合、測定実施機関は相互に妥当性を確認し、妥当性に疑いがあると認められる場合にあっては、その原因を特定する。

別記3 評価対象項目

次の測定以外の実施項目を3の評価の対象とする。

- 「緊急事態が発生した場合への平常時からの備え」のみを目的としたもの。
- 補足参考測定

別記4 被ばく線量の推定及び評価の方法

1 外部被ばくによる実効線量

発電所寄与分の外部被ばくによる実効線量は、空間放射線量率の1時間平均値が 平常の変動幅の上限を超過した事象(以下「上昇事象」という。)を対象に、以下 の式により算出する。

発電所寄与分の外部被ばくによる実効線量 (μSv)

= Σ (上昇事象中の空間放射線量率-上昇事象前後の平均空間放射線量率) (μ Gy/h) ×上昇事象中の経過時間 (h) ×0.8 (μ Sv/ μ Gy)

また、年間の外部被ばくによる実効線量については、発電所寄与(発電所寄与である可能性を否定できない場合を含む。)が認められた上昇事象に対して算出された外部被ばくによる実効線量を年間分合計する。

2 内部被ばくによる預託実効線量

発電所寄与分の内部被ばくによる預託実効線量は、環境試料¹¹中の放射能の測定 結果から、以下の式により算出する。

預託実効線量(μSv)

= 実効線量係数 (μ Sv/Bq)²⁾×年間の核種摂取量 (Bq)²⁾×市場希釈補正²⁾×調理等による減少補正²⁾

また、年間の内部被ばくによる預託実効線量については、発電所寄与が認められた対象試料ごとに、内部被ばくによる預託実効線量を算出し、それらを年間分合計する。

注1) 対象試料は、大気中浮遊塵、葉菜、牛乳、魚、無脊椎動物、海藻類、米、水及び茶とし、それ ぞれ1種類を選定する。

ただし、採取時期等の都合上、対象試料を採取していない(できない)場合は、それらに類する 適当なもので代替することができるものとする。

注 2) 「平常時モニタリングについて(原子力災害対策指針補足参考資料)」(原子力規制庁)、その他 適当な資料を参照し設定する。

3 被ばく線量の年間総合評価

1及び2で算出した外部被ばくによる実効線量と内部被ばくによる預託実効線量を合計することにより、年間の被ばく線量を推定する。

発電所周辺住民等の被ばく線量の評価については、公衆の年線量限度である $1\,\mathrm{mSv}$ を 十分に下回っていることを確認することとし、その比較対照を年 $50\,\mu\,\mathrm{Sv}^*$ とする。

※ 「発電用軽水型原子炉施設周辺の線量目標値に関する指針」(原子力委員会)において、発電用原子 炉施設が通常運転時に環境に放出する放射性物質によって施設周辺の公衆の受ける線量目標値は、実 効線量で年間 50 μ Sv とされている。

VI 令和2年度の平常の変動幅

1 空間放射線

1-1 線量率

	測定地点名			平常の変動幅 (nGy/h)						
	10	分間平均	7値	1 時間平均値						
御前崎市	白砂	36	\sim	81	36	~	80			
	中町	50	\sim	88	50	~	87			
	桜ヶ池公民館	43	\sim	88	44	~	86			
	上ノ原	43	\sim	87	44	\sim	84			
	佐倉三区 ¹⁾	37	\sim	79	37	~	78			
	平場	36	\sim	78	36	~	75			
	白羽小学校	40	\sim	85	40	\sim	80			
牧之原市	地頭方小学校 2)	40	\sim	80	40	~	76			
御前崎市	旧監視センター	38	\sim	77	39	~	76			
	草笛 ³⁾	38	\sim	77	38	~	73			
	新神子	32	\sim	86	32	~	82			
	浜岡北小学校	40	~	92	40	~	87			
掛川市	大東支所 4)	38	\sim	81	38	~	80			
菊川市	水道事務所	44	\sim	84	44	~	83			

- 注1) 平常の変動幅は、測定装置の不具合が生じたため平成29年12月6日7時ごろ、平成30年4月9日 11時~15時ごろ及び令和元年11月19日16時30分ごろの値を除外している。
- 注2) 平常の変動幅は、測定装置の不具合が生じたため平成30年5月24日5時~9時ごろの値を除外している。
- 注3) 平常の変動幅は、X線照射が行われた平成27年9月18日9時~17時、10月16日9時~14時、平成28年5月6日~11日(8日は除く)及び8月24日~25日の値を除外している。また、令和元年6月に行った測定装置の修繕(検出器の取替え)により、測定値に有意な変化が生じたため、検出器の交換後から一定の割合((最大又は最小)×(2.5/42.6))を引いた値としている。(調査結果書第182号)
- 注4)10分間平均値は、X線非破壊検査を近傍で実施した平成27年10月5日の午前中の値を除外している

1-2 積算線量

	測定地点名	平常の変動	b幅(m(Gy/90 日)
御前崎市	芹沢	0.14	~	0.15
	西山	0.14	\sim	0. 15
	上比木	0.15	\sim	0. 16
	合戸東前	0.14	~	0.15
	門屋石田	0.14	\sim	0. 15
	中尾	0.16	\sim	0. 17
	朝比奈原公民館	0. 13	~	0.15
牧之原市	旧地頭方中学校	0.14	\sim	0. 15
	菅山保育園	0.13	\sim	0. 15
	鬼女新田公民館	0.13	~	0.15
掛川市	千浜小学校	0. 15	~	0. 16
菊川市	東小学校	0.14	~	0. 15

2 環境試料中の放射能

2-1 全 α ・全 β 放射能

	平常の変動幅								
測定地点名	集塵中	集塵中の全α・全β		集	と 中の 全	Èβ	集塵終	集塵終了6時間後の	
	放射能比 放射能(Bq/m³)		全β放射能(Bq/m³)		$\mathrm{Bq/m^3}$)				
御前崎市 白砂	LTD ¹⁾	\sim	8. 2	LTD	\sim	12	LTD	\sim	0.38
中町	LTD	~	3. 9	LTD	~	12	LTD	~	0. 25
平場	LTD	~	4. 2	LTD	~	9.8	LTD	~	0. 23
白羽小学校	LTD	~	4. 0	LTD	~	9.6	LTD	~	0. 25
牧之原市 地頭方小学校	LTD	\sim	4. 1	LTD	~	8. 7	LTD	~	0. 29

注1) LTDは「検出限界未満」を示す。

2-2 核種分析

① γ線放出核種(陸上試料)

(上段「平常の変動幅」、下段「震災後の変動幅」1))

大気	分類	試料名	⁶⁰ Co	$^{131}\mathrm{I}$		¹³⁴ Cs			¹³⁷ Cs		単 位
Part	大気	大気中 浮遊塵	ļ		*		7 78	*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8 91	${ m mBq/m^3}$
様水 上 水 **					<u> </u>		1.10	~		0.21	
上環 上環 **	陸水	上 水 3)4)	ļ	—							mBq/L
************************************	- 上悔	上 按 5)	*	/		*			\sim		Ba/ka 乾土
本	上坡	上 按		/	*		21.6	3.3		28.4	Dq/ Kg 平台工。
# ~ 0.076		玄 米 6)	ļ								
# ~ 0.19 * ~ 0.190 * * * 190 * * * 190 * * * * * * * * * * * * * * * * * * *					*		0.076				
# * * * * * * * * * * * * * * * * * * *		すいか	l		-1-		0.10				
# * ~ 0.056 * ~ 0.065 * * ~ 0.065 * * * * * * * * * * * * * * * * * * *					*		0. 19	*		0. 190	
白 菜		キャベツ	ļ		*		0.056	v		0.065	
# * ~ 0.036 * ~ 0.055							0.030	*		0.003	
##		白 菜	L		*		0 036	*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 055	
農畜産物		- 5)			•	_	0.000	•		0.000	
# たまねぎ *		レタスリ				—			—		
*	###	ナナカギ	*			*			*		D /1 45
************************************	農 	によねさ	*		*	\sim	0.032	*	\sim	0.049	Bq/kg 生
************************************	産	白わギ7)	_			_			_		
***	499	D446				_			_		
* * * * * * * * * * * * * * * * * * *		カルルト	ļ			*		Į	\sim		
大根。 * * * * * * * * * * * * * * * * * * *		77002			*		0. 13				
* * * * ~ 0.021 * ~ 0.051 * ~ 0.051 * * ~ 0.016 * * * ~ 0.016 * * ~ 0.096 * 0.0088 ~ 1.14 * * ~ 0.066 * * * ~ 0.066 * * * ~ 0.069 ~ 45.5 * * * * * * * * * * * * * Bq/kg 生 * * * * * * * * * * * * * * * * * *		大 根 8)	L					Į			
* * * * * * * * * * * * * * * * * * *		, , , , ,		*	*		0.021				
* * * ~ 0.066		みかん ⁹⁾	ļ		.1.		0.00	Į			
					*		0.96				
原 乳 ¹¹⁾ * * * * * * * * * Bq/kg 生 Bq/kg 生 Bq/kg 生 ¹³¹ I は Bq/L 下水 * * * * * * * * * * * * * * * * * *		茶 葉 10)	L				11 G	<u> </u>			
原 乳 11 * * * ~ 0.14 * ~ 0.43 * ~ 0.45 ** I は Bq/L 雨水 ちり 降下物 * * ~ 617 * ~ 611 Bq/m² 指標 か 養 * * * * ~ 0.22 Bq/kg 生				/	<u> </u>		44.0	0.009		40. 0	D /1 /4-
雨水 ちり 降下物 * * * * * * * * * * * * * * * * * * *		原 乳11)		* ~ 0 1 <i>4</i>	*		0.43	*	·····	0 45	Bq/kg 生 ¹³¹ I は Bq/L
* * * * * * * * * * * * * * * * * * *	雨水			. 0.11	•		V. 10				
指標 * * * ~ 0.22	ちり	ちり 降下物	ļ		*		617	ļ	\sim		Bq/m ²
Provide	上 指煙	Lu -tt-				*			\sim		- 0 - 1
$ \pm 100 $ $ * * * \sim 41.1 0.029 \sim 44.3 $	生物	松業	*		*	\sim	41.1	0.029	\sim	44. 3	Bq/kg 生

- 注1)「震災後の変動幅」は、平成23年3月12日以降に採取した試料の最大値と最小値の幅とした。
- 注2)*印は、「検出されず」を示す。
- 注3) 平常の変動幅は、御前崎市桜ヶ池(浜岡上水道水源池)及び新神子(県営榛南水道及び大井川広域水道の混合水) の測定値から定めた。
- 注4)上水の131Iは令和2年度から測定項目に追加したため、変動幅を設定していない。
- 注5) 御前崎市新神子の土壌については、平成29年度第3四半期の試料採取時に客土されていることが判ったため、震災後の変動幅を定めるにあたり、当該測定値を除外した。
- 注6)変動幅は、御前崎市下朝比奈及び牧之原市地頭方の測定値から定めた。
- 注7) レタス及び白ねぎは令和2年度から測定を開始したため、変動幅を設定していない。
- 注8) 平常の変動幅は、御前崎市白浜及び牧之原市堀野新田、並びに御前崎市上ノ原(平成18~21年度)の測定値から 定めた。
- 注9)変動幅は、御前崎市上ノ原及び牧之原市堀野新田の測定値から定めた。
- 注10) 平常の変動幅は、御前崎市法ノ沢、新谷及び門屋、牧之原市笠名、並びに、菊川市川上原の測定値から定めた。
- 注11) 平常の変動幅は、御前崎市名波(平成18~20年度)及び宮木ヶ谷(平成21~22年度)、並びに、掛川市下土方の 測定値から定めた。

② γ線放出核種(海洋試料) (上段「平常の変動

(上段「平常の変動幅」、下段「震災後の変動幅」1))

分類	試料名	⁶⁰ Co	¹³¹ I	¹³⁴ Cs		1	¹³⁷ Cs	単 位	
	海底土3)	* ²⁾		* ~	0.47	*	~ 1.2 ~ 1.4	Bq/kg 乾土	
海底土	海底土4)	*		* ~	1.6	* 1. 3	\sim 2.7 \sim 3.1	Dq/ kg #2_1.	
	しらす	*		* ~	0. 21	*	~ 0.071 ~ 0.21		
	ひらめ	*		* ~	0.44	0. 10 0. 15	~ 0.13 ~ 0.68		
	あじ	*		* ~	0. 21	0. 11 0. 11	\sim 0.18 \sim 0.39		
	かさご	*			* ~	0. 25	0. 072 0. 084	\sim 0.14 \sim 0.36	
	さざえ	*		* ~	0. 11	*	* ~ 0.17		
海産生物	はまぐり	*		*	0. 031	*	* ~ 0.070	Bq/kg 生	
物	か き	*		* ~	0. 15	*	* ~ 0.15		
	いせえび	*		* ~	0. 49	0.060	~ 0.087 ~ 0.65		
	たこ	*	- /	*			*		
	なまこ	*		* ~	0. 11	*	~ 0.14 *		
	わかめ	*	*	* *		Ne Ne	*		
海水	海水	* * *	*	* * ~	4. 5	* * *	$ \begin{array}{ccc} \sim & 0.045 \\ \sim & 4.0 \\ \sim & 6.1 \end{array} $	mBq/L	

- 注1)「震災後の変動幅」は、平成23年3月12日以降に採取した試料の最大値と最小値の幅とした。
- 注2)*印は、「検出されず」を示す。
- 注3) 御前崎港以外の採取地点の変動幅である。
- 注4) 御前崎港の変動幅である。

③ ストロンチウム 90

(上段「平常の変動幅」、下段「震災後の変動幅」1))

分類	試 料 名	$^{90}\mathrm{Sr}$	単位
陸水	上 水2)	_ _	mBq/L
土壌	土 壤2)	<u> </u>	Bq/kg 乾土
	玄 米	検出されず 検出されず	
	キャベツ	検出されず 検出されず ~ 0.0092	
農畜産物	大 根 ³⁾	検出されず ~ 0.037 検出されず ~ 0.036	
	茶 葉	検出されず ~ 0.40 検出されず ~ 0.16	
	原 乳4)	検出されず ~ 0.022 検出されず ~ 0.018	
	しらす	検出されず	Bq/kg 生
	かさご	検出されず 検出されず	
海洋生物	さざえ	検出されず 検出されず	
	いせえび	検出されず 検出されず	
	わかめ	検出されず 検出されず	

- 注1)「震災後の変動幅」は、平成23年3月12日以降に採取した試料の最大値と最小値の幅とした。
- 注2)上水及び土壌は、令和2年度から測定項目に追加したため、平常の変動幅を設定していない。
- 注3) 平常の変動幅は、御前崎市白浜及び牧之原市堀野新田、並びに御前崎市上ノ原(平成18~21年度) の測定値から定めた。
- 注4) 平常の変動幅は、御前崎市名波(平成18~20年度)及び宮木ヶ谷(平成21~22年度)の測定値から 定めた。

④ トリチウム

(上段「平常の変動幅」、下段「震災後の変動幅」1)

分類	試料名	³H	単位
	上 戸由まり	検出されず ~ 0.017	D /. 3
大気	大気中水分	検出されず ~ 0.019	$\mathrm{Bq/m^3}$
人気	捕集水中水分	検出されず ~ 2.0	
		検出されず ~ 1.4	
17-ta-skc	[h- 2)	検出されず ~ 0.91	D /I
陸水	上水 2)	検出されず ~ 0.82	Bq/L
海水	海水 3)	検出されず ~ 0.88	
		検出されず ~ 0.81	

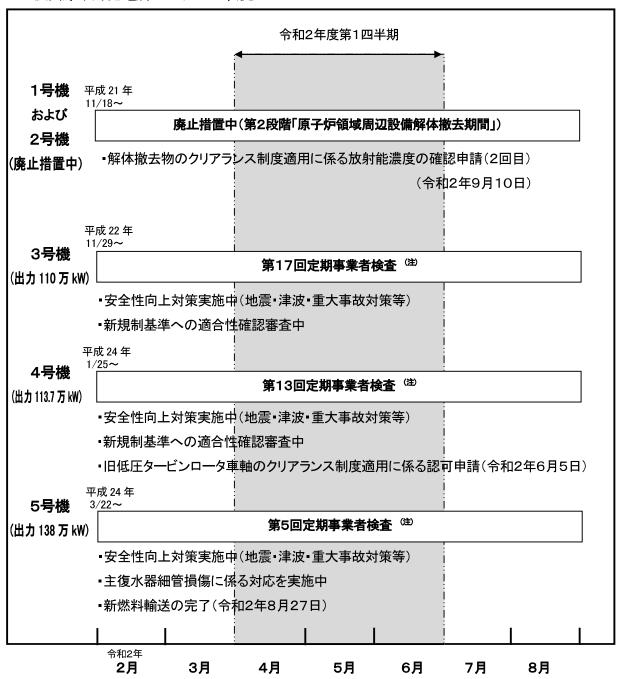
- 注1)「震災後の変動幅」は、平成23年3月12日以降に採取した試料の最大値と最小値の幅とした。
- 注2) 平常の変動幅は、御前崎市桜ヶ池(浜岡上水道)の測定値から定めた。
- 注3) 平常の変動幅は、浅根漁場、1,2号機放水口付近、取水口付近、3号機及び4号機放水口付近、並びに5号機放水口付近の測定値から定めた。

⑤ プルトニウム

(上段「平常の変動幅」、下段「震災後の変動幅」1))

分類	試料名	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	単位
土壌	土壤 2)			Bq/kg 乾土

- 注1)「震災後の変動幅」は、平成23年3月12日以降に採取した試料の最大値と最小値の幅とした。
- 注 2)土壌のプルトニウム分析は、令和2年度から測定項目に追加したため、平常の変動幅を設定していない。


3 排水の全計数率

試料名	平常の変動幅	単位
1・2 号機放水口モニタ	5.4 ~ 44	
3号機放水口モニタ	6.3 ~ 16	an a
4号機放水口モニタ	7.0 ~ 10	cps
5号機放水口モニタ	4,9 ~ 17	

VII 浜岡原子力発電所の運転状況等

今期(令和2年4月~6月)の浜岡原子力発電所の運転状況等を以下に示す。

1 浜岡原子力発電所のプラント状況

(注) 令和2年4月1日に「核原料物質、核燃料物質及び原子炉の規制に関する法律」が改正され、「施設定期検査」という用語がなくなったことから、同検査に相当する「定期事業者検査」へ用語を変更しました。

2 放射性廃棄物の放出管理

浜岡原子力発電所における放射性気体廃棄物および放射性液体廃棄物の放出管理状況を表1,2に示す。

表 1 放射性気体廃棄物

単位: B q

項目	今期の放出量(令和2年4月~6月)
全希ガス	検出限界未満 *1
よう素-131	検出限界未満 *1
全粒子状物質	検出限界未満 *1
トリチウム	2. 1×10 ¹⁰ *2

表 2 放射性液体廃棄物

単位:Bq

項目	今期の放出量(令和2年4月~6月)
全核種(トリチウム除く)	検出限界未満 *1
トリチウム	1. 2×10 ⁹ *2

※1:検出限界は「発電用軽水型原子炉施設における放出放射性物質の測定に関する指針」に定める 測定下限濃度以下である。

〈放射性気体廃棄物〉

- ・全 希 ガ ス: 2×10^{-2} Bg/cm³
- ・よう素 $-131:7\times10^{-9}$ Bg/cm³
- ・全 粒 子 状 物 質: 4×10⁻⁹Bq/cm³(コバルト-60 で代表)

〈放射性液体廃棄物〉

- ・全核種(トリチウム除く): 2×1 0⁻²Bq/cm³(コバルト-60 で代表)
- ※2:トリチウムは体内に蓄積されにくくエネルギーも低いため人体への影響が極めて小さい。 なお、3 $_{7}$ 月間の放出量から年間の実効線量を評価しても、 $1\times10^{-5}\,\mathrm{mS}\,\mathrm{v}$ 以下であり、 年実効線量限度 $^{1}\,\mathrm{1mS}\,\mathrm{v}$ の 10 万分の 1 以下となる。

参考 公衆の線量目標値2の50 µ S v / 年も下回っている。

¹ 法令に定める一般公衆の線量の基準は、国際放射線防護委員会 (ICRP) の勧告に基づき、原子炉施設 については周辺監視区域境外の線量限度として、1年間につき実効線量 1mSv と定めている。

² 原子力委員会が定めた「発電用軽水型原子炉施設周辺の線量目標値に関する指針」における発電用原子炉施設が通常運転時に環境に放出する放射性物質によって施設周辺の公衆の受ける線量目標値は、実効線量で年間 50μSv とされている。

VⅢ 浜岡原子力発電所内モニタ測定結果

浜岡原子力発電所におけるモニタリングポスト、排気口および排気筒モニタの測定結果をそれぞれ表 1 、表 2 に示す。

(放水口モニタの測定結果については、浜岡原子力発電所周辺環境放射能測定結果参照。)

表1 モニタリングポストでの線量率

単位: n G y / h

モニタリング ポスト	今期の測定結果 (令和2年4月~6月)		自然放射線	泉による変	動範囲**1	
No. 1	3 6	~	5 7	3 4	\sim	7 1
No. 2	3 1	~	5 4	3 1	\sim	6 6
No. 3	3 3	~	5 9	3 3	\sim	6 9
No. 4	3 3	~	5 6	3 1	\sim	6 8
No. 5	3 4	~	5 5	3 3	\sim	6 5
No. 6	3 2	~	5 7	3 0	\sim	6 6
No. 7	3 6	~	6 0	3 5	~	6 8

※1:平成27年4月~令和2年3月の測定値の最小値、最大値を示す。

表2 排気口および排気筒モニタでの計数率

単位: c p s

モニタ	今期の測定結果 (令和2年4月~6月)			自然放射線による変動範囲*2		
1号機排気口	0.82	~	3. 4	0.79	\sim	3. 7
2号機排気口	0.76*3	~	2. 2	0.77	\sim	3. 5
				0.76*3	\sim	3. 5
3号機排気筒	2. 3	~	2. 9	2. 3	~	3. 1
4号機排気筒	2. 5	~	3. 1	2. 4	~	3. 1
5 号機排気筒	4. 0	~	4. 8	4. 0	~	5. 0

※2:平成27年4月~令和2年3月の測定値の最小値、最大値を示す。ただし、1号機および2号機排気ロモニタについて、運用開始以降の実績値として平成30年2月~令和2年3月の測定値の最小値、最大値を示す。

※3:令和2年6月11日、自然放射線のゆらぎにより一時的に「自然放射線による変動範囲」の下限を下回った。この 事象を踏まえ、「自然放射線による変動範囲」の下限値について、6月26日に見直した。

浜 岡 原 子 力 発 電 所 周 辺 環 境 放 射 能 調 査 結 果

第186号

調査期間:令和2年4月~6月

令和2年9月

編集·発行 静岡県環境放射能測定技術会

事務局:静岡県危機管理部原子力安全対策課

住 所 静岡市葵区追手町9番6号

TEL (054) 221-2088